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pected to have a value between kz2 and k33, as is indeed 
found to be the case experimentally (Saupe, 1960b). 

Application to p-azoxyanisole and p-azoxyphenetole 

For a comparison of the elastic moduli of PAA and 
p-azoxyphenetole (PAP) we make the reasonable as- 
sumption that the molecular distributions in the two 
compounds are similar. [The difference in the density 
is, in any case, accounted for explicitly in equation (3)]. 
Using the values B, D and n of PAA and PAP (see 
part  I), and putting Y22=0.300 for both compounds, 
sl, s2 and k22 have been calculated for the temperatures 
for which data are available. Wherever transition tem- 
peratures Tc have not been specifically mentioned by 
the authors, the values of Chatelain & Brunet-Germain 
(private communication; see Chandrasekhar & Mad- 
husudana, 1969) have been used. The results are pre- 
sented below in terms of the relative temperature 
T o - T :  

S 1 S 2 k22 × 107 dyne 
T o -  T (theor.) (theor.) (theor.) (expt.) 

PAA 5 °C 0.422 0.328 2.95 2.89* 

PAP 18 °C 0"632 0"530 

3"1"t" 

7"03 7"1]" 

* Saupe (1960 b). 
I" Orsay Liquid Crystal Group (1970). 

The temperature variation of the elastic moduli of 
PAA are shown in Fig. 1 along with data of Saupe 
(1960b) for kll and those of Freedericks & Zwetkoff 
(1934; see Saupe, 1960b) for k22. Here ~ ,=0 .481 ,  and 
:Y22 =0.300 as before. 

The general agreement can be seen to be very good, 
showing that the approximations made in the calcula- 
tions are justified. The results also seem to provide 
further confirmation of the validity of the statistical 
theory developed in part I. 

One of us (K.S.) is indebted to CSIR for a fellowship. 
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Thermal Expansion of LiF by X-ray Diffraction and the Temperature Variation of its 
Frequency Spectrum 

BY P.D. PATHAK AND N. G. VASAVADA 
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(Received 6 May 1971) 

The coefficients of thermal expansion of LiF are determined at different temperatures using a diffractom- 
eter, Geiger counter, chart recorder and a specially designed furnace. Equations are obtained for the 
variation of lattice constants with temperature. The temperature dependence of the thermal expansion 
at high temperatures is shown to be related to the concentration of thermally generated Schottky defects. 
The energy of formation of Schottky pairs is found to be 2.42 eV. The Grtineisen constant y is found to 
decrease with temperature. The mean frequency of the vibrational spectrum is found to decrease with 
temperature and the variation between 300 and 1000°K is about 13 %. 

Introduction 

The thermal expansion of LiF has been investigated 
mainly by Eucken & Dann~Shl (1934), Sharma (1950) 
and Pathak, Pandya & Ghadiali (1963). The first two 
investigations are by macroscopic methods while the 
last one is by X-ray method. 

It was shown in our previous paper (Pathak & Vasa- 
vada, 1970, to be called paper I hereafter) that values 
of the linear thermal expasion of NaC1, KC1 and CsBr 
obtained by different workers agree at lower temper- 
atures but show wide discrepancies at higher temper- 
atures. The same feature can also be seen from Table 1 
in the case of LiF. 
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One of the aims of the present experiment was, there- 
fore, to determine accurate values of the thermal ex- 
pansion of this salt, especially at high temperatures. 
The present work on LiF is a part of the general and 
detailed investigation of the thermal expansion of alkali 
halides. The thermal expansion of LiF beyond 700 °C 
is probably determined for the first time. 

Experimental 

The lattice constants were determined at different tem- 
peratures using a diffractometer, Geiger counter, chart 
recorder and a specially designed furnace. The exper- 
imental technique has been fully described in Paper I. 
The accuracy of the results is estimated to be about ½ %. 

Results and discussion 

The lattice constant of LiF was found to vary with 
temperature according to the following equations 
(obtained with the help of an IBM 1620 computer)" 

x106 75"0 

70"0 LiF 

65"0 

,.-,, 60"0 

o ~ 55"0 

50"0 

45'0 

40'0 

35"0 

30'0 
0 I ;0  2;0 3;0 4;0 500 6;0 7';0 800 960 

TEMPERATURE (°C) 

Fig. 1. Plot of coefficient of linear expansion of LiF versus 
temperature. 

5 ' 0 0  

B9o 

"~ ~.8o 
,.J 

6 " 7 0  

~6o 

B5o 
0 ' 8 8  

L i F  

= • 

! I I I i I I 
0 " 9 0  0 " g 5  

1031T 

Fig. 2. Plot of logarithm of excess expansion versus reciprocal 
of temperature 

From 0 to 625 °C 

at =4.0104+ 1.3928 × 10-4t+ 5.023 × 10-st z 

+ 1.287 × 10-nt  3. (1) 

From 575 to 850°C 

at=4"1096+2.1595 × 10-4(t - 575)+3.400 
× 10-9(t - 575)2+ 3.204 × 10-1°(t-  575) 3. (2) 

The coefficient of linear expansion, defined by a =  
(1/at) (dat/dt) is given in Table 1 along with those de- 
termined by other workers. 

Table 1. Coefficient of  linear expansion c~ of  LiF 

Temperature a(°C-1) × 106 
(oc) 

a b e d 
0 - 33"8 32"7 34"7 

50 - 34"9 34.9 36"0 
100 36"5 36.3 37.2 37.3 
200 40.3 39.8 41 "5 40.0 
300 44"6 44"3 45"7 42"7 
400 49.3 49"8 - 45"8 
500 54"6 56"2 - 48-8 
600 60"3 63 "7 - 52.0 
650 - - - 54'0 
700 66"5 72.1 - 56"2 
750 - - - 59"4 
800 - - - 63 "9 
850 - - - 69"6 

(a) Eucken & Dann6hl (1934); (b) Sharma (1950); 
(c) Pathak & Pandya (1963); (d) Present result. 

According to Grfineisen's theory the thermal expan- 
sion of alkali halides should be a slowly varying func- 
tion of temperature, especially above the Debye tem- 
perature, and can be represented by 

~(T)=a(To)+(d~/dT)r=ro(T-  To)+ Aa . (3) 

Here a(T) is the linear coefficient of thermal expansion 
at any temperature T between To and the melting point 
and Ac~ is the 'anomalous' part of the expansion which 
may be due to the thermally generated defects at high 
temperatures. In paper I it was shown that the energy 
of vacancy formation can be deduced from the slope 
of log A~ versus 1/T. 

It is assumed in this paper that the defects do not 
play any significant role below the temperature approx- 
imately corresponding to the 'knee' of the electrical 
conductivity versus 1/T plot. The 'knee' temperature 
for LiF is approximately 650°C. Thus it is assumed 
that equation (1) holds up to the melting point and 
that any deviation Aa from it is due to defects (Fig. 1). 
The plot of log Aa versus 1/T for LiF is shown in Fig. 2. 
The energy of formation, Ws, of the Schottky defects, 
determined from the slope, is 2.42 eV. The experiment- 
ally determined values obtained by different workers 
range from 2.34 to 2.68 eV (Haven, 1950; Barsis, Lilley 
& Taylor, 1967; Stoebe & Praat, 1967). 

It was shown in paper I that the plot of the reduced 
expansion [~l(a)m/2] versus the reduced temperature 
T/Tm gives a common curve for the three alkali halides 
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NaC1, KC1 and CsBr. Here Tm is the melting point and 
(a),,/2 is the coefficient of thermal expansion at T=  ½T,,. 
The common curve is given in Fig. 3 and points for LiF 
are shown on it. It can be seen that LiF also follows the 
'law of corresponding states'. 

It has been shown by Schauer (1964) that useful in- 
formation can be derived from the measurement of the 
volume expansion coefficient fl of a material, fl can be 
obtained from the relation 

0ZF 
f l -  0 POT" (4) 

If the free energy F is given by 

F = U 0 +  ~ kT log  { 1 - e x p ( - h v / k T ) }  (5) 
v 

where U0 is the sum of the internal energy and the zero 
point energy of the crystal, it can be shown that 

fl 1 1 ZT~C~ 
Z---~=V ~ 7~C~= V ~, Ci ~" C~ (6) 

where C~ is the specific heat of a linear harmonic oscil- 
lator of frequency v (Einstein function). Comparing 
this with the usual Grfineisen relation 

C~zr 
f l=7 V-- (7) 

it is possible to define 7 as 

Y. ~iC~ (8) 

Now 

hence 

7l = 
d log v~ V dv~ 
d log V vi d V ' 

1 dh  1 dV 
vi dT = - 7 ~  V dT - - 7 ~ f l "  

Multiplying equation (9) by C~ and summing gives 

C~ 1 dvi 
vi dT - fl ~ 7iCt 

o r  

1 dvi E, E, 

(9) 

(10) 

The type of information which is available from the 
above equation differs in different temperature regions. 
For example, if T ~  0 (0 = Debye temperature) the solid 
behaves classically and we have Ct = constant. From 
equation (8) it follows for the high-temperature limit 
of 7 that 

1 3N 
7oo = ~ ~ 7,.  (11) 

l = l  

In other words, 700 is simply the arithmetic mean of the 
individual 7~s. From equation (10) we get 

1 1 d v ~ _  
3N ~" v, dT -?0off (12) 

i.e.-70off gives the arithmetic mean of all frequency 
temperature coefficients. Integration of equation (12) 
yields 

1 1 r d V i _  I r 
3N ~ ro v, 70o ro fldT (13) 

o r  

1 V~ f T 3N E l o g - -  = - 70o fldT 
VI0 To 

(14) 

where vi is the frequency of the ith mode at temperature 
T and vi0 is this frequency at a certain reference tem- 
perature To. This can be rewritten as 

o r  

,og(  v )x,3N I" = -70o fldT (15) 
To 

. . . . .  v,o " 

1"7 
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0"9 

o 

o o 

0"80"2 013 014 015 016 0"7 018 019 1"0 
T / T =  

Fig. 3. Common plot of reduced expansion Ot/O~ml2 versus 
reduced temperature Z/Tm for all alkali halides (paper I) 
with points for LiF superimposed. 
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Fig. 4. Plot of geometric mean of frequency spectrum versus 
temperature. 
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As the exponential is small, 

v =1-7oo  f ldT.  (17) 
ro 

Thus the integrated form yields the geometric mean of 
the frequency ratios vffv~o. 

Table 2. Griineisen constant ~ of  LiF 

Temperature 
(°c) 

0 1.63 
50 1.59 

100 1-50 
200 1.42 
300 1-34 
400 1.26 
500 1.14 
600 0.98 
650 0-91 
700 0.83 
750 0.77 
800 0-73 
850 0.71 

I 
T 

Fig. 4 gives a plot of 1 -yoo fldT versus T for LiF 
TO 

(0=617°K).  It is seen that the mean frequency de- 

creases by about 13 % between 300 and 1000°K. The 
values of 9) at different temperatures are given in Table 
2. It is interesting to note that ~ decreases with temper- 
ature. In calculating 9, the values of Cp used were those 
given by Douglas & Dever (1954) while the compres- 
sibility values were taken from Suss (1958). The ac- 
curacy claimed in the case of Cp and compressibility is 
about ½ %. 
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A Simple Method for Locating Unoccupied Spaces in a Proposed Crystal Structure 

BY D. J. WATKIN 
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The presence of unoccupied space of sufficient cross section lying outside the van der Waals surfaces 
of the atoms in a crystal structure may mean that atoms have been omitted from the structure. A simple 
graphical method has been devised to display these voids. When such voids occur because of the omis- 
sion of atoms from a trial structure, the significance of peaks in the difference map in the region of the void 
is enhanced. This makes it possible to detect and, within limits, to place poorly resolved atoms. 

A common complication in the determination of mole- 
cular structures is the unexpected presence of mole- 
cules of solvent in the crystal. When the crystal is 
stable and the molecular formula of the major compo- 
nent is known, the presence of solvent of crystallization 
can be detected by density and unit-cell measurements. 
If the density cannot be measured or when the molec- 
ular weight of the material is high, difference Fourier 
maps are relied on to reveal solvent molecules. Com- 
parison of the difference map with the structure is 
time-consuming for medium-sized structures, especially 
if the map has an irregular background. Electron 
density peaks due to atoms with only partial occupancy, 
large thermal parameters or actual positional disorder 

will be low and may not stand out from the background, 
and then may not be included in the final description 
of the structure. If solvent is expected, for example by 
analogy with a related compound, an extended space- 
filling model of the structure will reveal the possible 
sites (Powell, Watkin & Wilford, 1971) but this 
procedure is slow. 

A graphic display has been devised to detect the 
omission of atoms from a structure. Scale drawings of 
sections through the whole unit cell are generated, 
with those areas falling within the van der Waals 
radius of each atom centre shaded in. Any voids within 
the cell are thus revealed, and the difference Fourier 
map for this region can be closely examined. A normal 

A C 28A-3 


